

Pergamon

Tcvokdron Ledters, Vol. 35. No. 16. pp. 25612564. 1994 Elsevicr Science !.td Printed in Great Britain oo40-4039m s6.oo+o.00

0048-4039(94)Eo403-K

SYNTHESIS AND STRUCTURAL PROPERTIES OF 2,7-METHANOCYCLODECA[a]AZULENE AND ITS DERIVATIVE

Koji Ito, Hiroyuki Kawaji, and Makoto Nitta* Department of Chemistry. School of Science and Engineering, Wsseda University, Shinjuku-ku, Tokyo 169, Japan

Summary: The title compounds were synthesized, and their ¹H NMR spectra revealed that **they are composed of delocalized methano[lO]annulene and localized azulene moieties.**

1,6-Methano[10]annulene (1)¹ satisfies the Hückel (4n+2) π requirement and a variety of the derivatives, which are cata-condensed with aromatic² and hetero-aromatic³ rings, **have been studied in view of the degree of their aromaticity. In nearly every system studied, annulation of aromatic rings reduces the aromaticity of the parent ring, as measured by the loss of diatropicity in the *H NME spectra. Among these investigations, compound5 24 and 3s, both of which are annulated with l-azaazulene and azulene** at the C2-C3 position of 1, respectively, have been synthesized. Their ¹H NMR spectra revealed that bond-length alternation of methano^[10]annulene moieties is remarkable as **compared with that of l-azaazulene and azulene moieties. While a few 1,6** methano[10]annulenes condensed with hetero-aromatic rings at the C3-C4 position have been reported,^e examples of 1 condensed with aromatic hydrocarbon at the C3-C4 posi**tion are scarce. Thus, our interests are focused on the synthesis and structural characteristics of 4 and 5.**

Cur synthetic strategy at first was to prepare the azulene skeleton 9, which would be expected from the thermal reaction of the enamine 7 with 2H-cyclohepta[b]furan-2one 8, according to the method explored by Yasunami, Takase, and co-workers.⁷ Compound 7 derived from ketone 6^e in a usual manner reacted with 0.5 molar equivalents of **8** in BuOH under reflux for 5 h to give $9^{11.12}$ in a 42% yield after purification by **column chromatography (silica gel, Hexane) (Scheme 1). For protection toward electrophilic attack onto the Cl of azulene nucleus, 9 wss treated with trifluoroacetic** anhydride¹³ in CH₂Cl₂ at 0 °C for 10 min to give $10^{11.12}$ quantitatively. Bromination of 10 was carried out at -78 °C to give $11^{11.12}$ in a 93% yield. Treatment of 11 with

5.7% KOH in EtCH-H~O (5/l) under reflux for 1 h underwent hydrolysis of trifluoroacetyl group and dehydrobromination simultaneously to afford $12,11$ which was treated with CH_2N_2 to give 13^{11,12} in a 34% yield after purification by TLC (silica gel, Hexane-AcOEt:lO/l). Treatment of 13 with DDQ in PhH at room temperature for 5 min afforded the expected dehydrogenation product $4^{11.12}$ in an 85% yield, while that with Pd/C in l,Z-dimethylbenzene under reflux for 23 h gave 4 in a 37% yield, after purification bY TLC (silica gel, Hexane-AcOEt:lO/l). Compound 4 was easily hydrolyzed with 5.7% KCH in EtOH-H₂O (5/1) under reflux to give 14-carboxy-2,7-methanocyclodeca[a]azulene (14), which was subsequently treated with trifluoroacetic acid in CH_2Cl_2 at 40 °C for 1 h to give 2,7-methanocyclodeca[a]azulene $(5)^{11,12}$ in a 32% yield (based on 4 used) after purification by TLC (alumina, Hexane-AcOEt:10/1).

The ¹H NMR spectra of 4 and 5 revealed that the mean chemical shift of peripheral protons of methano[10]annulene moiety of 4 (δ_{av} = 7.52-7.62) and 5 (δ_{av} = 7.59) was slightly shifted to the lower field than those of 1 (δ_{av} = 7.10), 2 (δ_{av} = 7.45), 3 (δ_{av} = 7.35), and 2,3-benzo-1,6-methano[10]annulene (15) $(\delta_{av} = 7.20).^{24}$ Similarly, the mean chemical shift of azulene moiety of 5 (δ_{av} = 7.55) was slightly shifted to the lower field than that of azulene (δ_{av} = 7.47), while that of 4 (δ_{av} = 8.26) was largely shifted to the lower field because of the electron-withdrawing methoxycarbonyl group, which also causes a drastic low-field shift of H-13 (δ = 9.60). The weakning of the diamagnetic ring current in the methano[lO]annulene ring of 2 and 3 was most clearly manifested in the signals of the bridge methylene of 2 (δ_{∞} = 0.75) and 3 (δ_{∞} = 0.54) for they were shielded similarly to that of 15 (δ_{av} = 0.66), but less shielded than that of 1 (δ_{av} = -0.50). On the other hand, the mean values of chemical shifts of the bridge methylene of 4 (δ_{av} = -0.07) and 5 (δ_{av} = -0.34) were greatly shielded than those of 2, 3, and 15. The feature indicates the diamagnetic ring current in the methano[lO]annulene ring of 4 and 5 is similar to that of 1. More finding such as the similar vicinal **COU**pling constants of methano[10]annulene moieties of 4 ($J_{3,4}$ = 8.59, $J_{4,5}$ = 8.52, and $J_{5,6}$ = 8.50) and 5 $(J_{3,4} = 8.93, J_{4,5} = 8.66,$ and $J_{5,6} = 8.70$) suggests that double bonds of

methano[lO]annulene moieties are delocalized as indicated in the canonical structures 4A and 5A in Fig. 2. On the contrary, a remarkable difference of the Vicinal coupling constants of the azulene moiety of 4 (J_{9,10} = 8.80, J_{10,11} = 10.27, J_{11,12} = 8.80, J_{12,13} = 11.04) and 5 (J_{P.10} = 8.43, $j_{10,11}$ = 10.99, J_{11,12} = 8.43, and J_{12,13} = 10.85), respectively, **also indicates a bond-length alternation of the azulene moieties as indicated in 4A and 5A in Fig. 2. No contribution of 4C and 5C is also suggested. Furthermore, if** peripheral 18^{T-electron conjugation mainly contributes in 4 and 5 as indicated in the} **canonical structures 4B and 5B, much lower chemical shift of the peripheral protons** should be expected.¹⁴ Thus, the contribution of peripheral 18π -electron conjugation **seems to be less important. Regarding the spectral data described above, one may consider a possibility of a rapid equilibrium between X and Y (Fig. 2) in the compounds 4 and 5. However, the 'H NMR spectra of 5 recorded in the temperature range between 25 OC and -100 'C exhibited no change. The electronic spectrum of 4, which has an electron-withdrawing substituent, is shifted to shorter wave-length as compared t0** that of 5. The feature is in good accordance with annulated azulene ring system.¹⁵

Regarding the resonance energy of azulene (12.8 kcal/mol) and methano[lO]annulene (17.5 kcal/mol),¹⁶ the electronic feature of 4 and 5 seems to be reasonable. On the **contrary, a double-bond fixation is remarkable in the methano[lO]annulene moiety rather than the azulene moiety of 3. Thus it is interesting that an interpretation of inherent n-electronic system as a result of condensation of aromatic ring is much dependent on the position of condensation.**

Acknowledgement: This work was financially supported by Waseda University Grant for Special Research Project.

References

- **1. E. Vogel and H. D. Roth, Angew. Chem.. 78, 145 (1964); E. Vogel and W. A.** Bijll, Angew. **Chem. Int. Ed. Engl., 3, 228 (1964); E. Vogel and W. A. Boll, Anger. Chem., 76, 784 (1964).**
- **2. (a) 6. Tanimoto, R. Schafer, J. Ippen, and E. Vogel, Angew. Chem. Int. Ed. Engl., 15. 613 (1976). (b) R. K. Hill, C. B. Giberson, and J. V. Siluerton, J. Am. Chem. Sot., 110. 497 (1988).**
- **3. R. Neidlein and G. Hartz, Chem. Zeit., 108, 366 (1984); R. Neidlein and G.**

Lautenschlager. Chem. Ber., 122, 493 (1989); U. H. Brinker and W. N. Jones, Tetrahedron Lett., 577 (1976); M. W. Jones, R. A. La Bar, U. H. Briker, and P. H. Gebert, J. Am. Chem. Soc., 99, 6379 (1977); N. Kanomata, H. Kawaji, and M. Nitta, J. Org. Chem., 57, 618 (1992).

- 4. M. Nit% H. **Kawadi,** and N. Kanomata, Tetrahedron Lett., 33, 251 (1992).
- 5. S. Kuroda, **J.** Yazaki, S. Maeda, K. Yamazaki, M. Yamada, I. Shimao, and M. Yasunami, Tetrahedron L&t., 33, 2825 (1992).
- 6. R. Neidlein and L. Tadease, Chem. Ber., 119, 3862 (1986); R. Neidlein and G. Schrb'der, Helv. Chim. Acta, 75, 825 (1992).
- 7. P. -W. Yang, M. Yasunami. and K. Takase, Tetrahedron Lett., 1971, 4275; Y. Kitsmori, M. Yasunami, C. Kabuto, and K. Takase, Bull. Chem. Soc. Jpn., 66, 245 (1993); M. Yasunami, S. Miyoshi, N. Kanegae, and K. Takase, Bull. Chem. Soc. Jpn., 66, 892 (1993); M. Yasunami, T. Hioki, Y. Kitamori, I. Kikuchi, and K. Takase, Bull. Chem. Soc. Jpn., 66, 2273 (1993).
- 8. The ketone 6^e was prepared through the reaction of a known mixture of syn and anti 4-oxatetracyclo[5.4.1.0.^{1.7}0^{3.5}]undec-9-en⁹ with LiAlH₄ followed by Swern oxidation.¹⁰
- 9. R R. Neidlein and P. Bronner. Chem. Ber., 122, 1499 (1989).
- 10. A A. J. **M~~CUSO** and D. Swern, Synthesis, 165 (1981).
- 11. Elemental analyses *or* high *resolution mess* spectral data are satisfactory for all new compounds except 12 and 14-carboxy-2,7-methanocyclodeca[lO]azulene (14).
- 12. Physical data: 4: dark green prisms; mp 130-132 °C (from MeOH); ¹H NMR (CDCl₃, 400 MHz) 6= -0.55 (lH, d, 9.54 Hz, -CHa-). 0.42 (lH, d, 9.54 Hz. -CHa-), 4.13 (3H, s, GMe), 6.86-6.96 (2H, dd, 8.52, 8.59 Hz, H-4, 5), 7.50-7.70 (2H, m, H-3, 6), 7.53 (lH, dd, 8.80, 11.04 Hz, H-12). 7.56 (lH, dd, 8.80, 10.27 Hz, H-lo), 8.14 (lH, 8, H-8), 8.24 (lH, s, H-l), 8.91 (lH, d, 8.80 Hz, H-9), 9.60 (1H, d, 11.04 Hz, H-13); IR (CHCl₃) 3009, 2951, 1678, 1530, 1455, 1438, 1415, 1223, 1153, 1100, 1012 cm⁻¹; λ_{\max} (logg) in EtOH, 241 (3.96), 280 (3.95), 314 (4.17), 361 (4.09), 578 (2.71), 691 (2.61), 745 (2.28), 772 (1.89). 5: dark green prisms; mp 166-167 "C (from EtCH); ¹H NMR (CDCl₃, 400 MHz) δ = -0.76 (1H, d, 9.53 Hz, -CH₂-), 0.08 (1H, d, 9.53 Hz, -CH₂), 6.91 (lH, dd. 8.43, 10.85 Hz, H-12). 6.97 (lH, dd, 8.66, 8.70 Hz, H-5), 7.04 (lH, dd, 8.66, 8.93 Hz, H-4), 7.12 (1H, dd, 8.43, 10.99 Hz, H-10), 7.25 (1H, dd, 8.43, 10.99 Hz, H-11), 7.54 (1H, br. 8, H-14), 7.71 (lH, d, 8.93 Hz, H-3), 7.73 (lH, d, 8.70 Hz, H-6), 7.77 (lH, br. 8, H-l), 7.99 (1H, d, 10.85 Hz, H-13), 8.34 (1H, br. s, H-8), 8.46 (1H, d, 8.43 Hz, H-9); λ_{max} (loge) in EtOH, 239 (4.16), 340 (4.59), 412 (3.55). 480 (2.81), 565 (2.33), 580 (2.39). 616 (2.51), 664 (2.56) , 712 (2.45) , 721 (2.44) , 845 (1.89) . 6: colorless oil; ¹H NMR (CDCl₃, 60 MHz) δ = 0.48 (lH, d, 4.0 Hz, cyclopropane), 0.73 (lH, d, 4.0 Hz, cyclopropane), 1.70-2.67 (6H, m, H-2, 3, 5, 8), 5.43-5.67 (2H, m, H-6, 7); IR (CHCl₃) 2969, 2861, 2841, 2811, 1710, 1400, 1194 cm⁻¹. 9: blue prisms; mp 113-114 °C (from EtOH); ¹H NMR (CDCl₃, 90 MHz) δ = 0.23 (lH, d, 4.18 Hz, cyclopropane), 0.56 (1H. d. 4.18 Hz, cyclopropane), 2.20-2.73 (4H, m, H-l, 8), *2.82-3-70* (4H, m, H-3 and 6), 5.50-5.73 (2H, m, H-4, 5), 6.90-7.60 (4H, m, H-10, 11, 12, 14), 8.00-8.27
(2H, m, H-9, 13). 10: reddish oil; ¹H NMR (CDC1₃, 90 MHz) $\delta = 0.19$ (1H, d, 3.95 Hz, 10: reddish oil; ¹H NMR (CDCl₃, 90 MHz) δ = 0.19 (1H, d, 3.95 Hz, cyclopropane), 0.61 (lH, d, 4.17 Hz, cyclopropane), 2.10-2.70 (4H, m, H-l, 8) 2.70-3-83 (4H, m, H-3 and 6), 5.45-5.80 (2H, m, H-4, 5), 6.90-8.60 (3H, m, H-10, 11. 12), 8.31 (2H. d, 9.67 Hz, H-9), 9.22 (2H, d, 9.67 Hz, H-13); IR (CHCls) 2970, 2895, 2840, 1640, 1430, 1410, 1330, 1145, 1030 cm⁻¹. 11: reddish purple oil; ¹H NMR (CDCl₃, 60 MHz) δ = 0.34 (1H, d, 5.0 Hz, cyclopropane), 0.74 (lH, d, 5.0 Hz, cyclopropane), 2.10405 (EH, m. H-1, 3, 6, 8). 4.28-4-65 (2H, m, H-4, 5), 7.15-7.92 (3H, m, H-10, 11, 12), 8.21 (lH, d, 9.0 Hz, H-9), 9.41 (lH, d, 10.0 Hz, H-13); IR (CHCl₃) 2910, 2840, 1640, 1430, 1260, 1140, 1030 cm⁻¹. 13: dark purple oil; ¹H NMR (CDCl₃, 60 MHz) δ = 0.48 (1H, d, 7.0 Hz, cyclopropane), 2.41 (1H, d, 7.0Hz, cyclopropane), 3.424.68 (7H, m, H-l, 8, and CMe), 6.05-6.48 (4H, m, H-3, 4, 5, 6). 7.08-7.65 (3H, m, H-10, 11, 12), 8.21 (1H, d, 9.0 Hz, H-9), 9.32 (1H, d, 9.0 Hz, H-13); IR (CHCl3) 3000, 2960, 2870, 1675, 1580, 1440, 1410, 1305, 1283, 1105, 1100 cm-l.
- 13. A. 0. Anderson, Jr. and R. G. Anderson, J. Org. Chem., 27, 3578 (1962).
- 14. L. M. Jackman, F. Sondheimer, Y. Amiel, D. A-Ren-Efrain, Y, Gaoni, R. Wolovsky, and A. A. Bosner-By, J. Am. Chem. Sot., 84, 4307 (1962); z. Yoshida, M. Shibata, E. Ogino, and T. Sugimoto, Tetrahedron Lett., 25, 3343 (1984).
- 15. M. Nitta, K. Nishimura, and Y. Iino, Tetrahedron Lett., 34, 2157 (1993); M. Nitta, Y. Iino, T. Sugiyama, and A. Toyota, Tetrahedron Lett., 34, 835 (1993).
- 16. W. R. Roth, O. Adamaczak, R. Breuckmann, H-W. Lennartz, and R. Boese, Chem. Ber., 124 2499 (1991).

(Received h Jqxm 27 September 1993; accepted 27 December 1993)